Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Appl Environ Microbiol ; 90(3): e0224523, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38319098

RESUMO

Bacterial-fungal interactions are pervasive in the rhizosphere. While an increasing number of endohyphal bacteria have been identified, little is known about their ecology and impact on the associated fungal hosts and the surrounding environment. In this study, we characterized the genome of an Enterobacter sp. Crenshaw (En-Cren), which was isolated from the generalist fungal pathogen Rhizoctonia solani, and examined the genetic potential of the bacterium with regard to the phenotypic traits associated with the fungus. Overall, the En-Cren genome size was typical for members of the genus and was capable of free-living growth. The genome was 4.6 MB in size, and no plasmids were detected. Several prophage regions and genomic islands were identified that harbor unique genes in comparison with phylogenetically closely related Enterobacter spp. Type VI secretion system and cyanate assimilation genes were identified from the bacterium, while some common heavy metal resistance genes were absent. En-Cren contains the key genes for indole-3-acetic acid (IAA) and phenylacetic acid (PAA) biosynthesis, and produces IAA and PAA in vitro, which may impact the ecology or pathogenicity of the fungal pathogen in vivo. En-Cren was observed to move along hyphae of R. solani and on other basidiomycetes and ascomycetes in culture. The bacterial flagellum is essential for hyphal movement, while other pathways and genes may also be involved.IMPORTANCEThe genome characterization and comparative genomics analysis of Enterobacter sp. Crenshaw provided the foundation and resources for a better understanding of the ecology and evolution of this endohyphal bacteria in the rhizosphere. The ability to produce indole-3-acetic acid and phenylacetic acid may provide new angles to study the impact of phytohormones during the plant-pathogen interactions. The hitchhiking behavior of the bacterium on a diverse group of fungi, while inhibiting the growth of some others, revealed new areas of bacterial-fungal signaling and interaction, which have yet to be explored.


Assuntos
Enterobacter , Hifas , Enterobacter/genética , Enterobacter/metabolismo , Hifas/metabolismo , Fenilacetatos/metabolismo , Rhizoctonia/genética
2.
New Phytol ; 241(3): 1266-1276, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984076

RESUMO

The fungal pathogen, Magnaporthe oryzae Triticum pathotype, causing wheat blast disease was first identified in South America and recently spread across continents to South Asia and Africa. Here, we studied the genetic relationship among isolates found on the three continents. Magnaporthe oryzae strains closely related to a South American field isolate B71 were found to have caused the wheat blast outbreaks in South Asia and Africa. Genomic variation among isolates from the three continents was examined using an improved B71 reference genome and whole-genome sequences. We found strong evidence to support that the outbreaks in Bangladesh and Zambia were caused by the introductions of genetically separated isolates, although they were all close to B71 and, therefore, collectively referred to as the B71 branch. In addition, B71 branch strains carried at least one supernumerary mini-chromosome. Genome assembly of a Zambian strain revealed that its mini-chromosome was similar to the B71 mini-chromosome but with a high level of structural variation. Our findings show that while core genomes of the multiple introductions are highly similar, the mini-chromosomes have undergone marked diversification. The maintenance of the mini-chromosome and rapid genomic changes suggest the mini-chromosomes may serve important virulence or niche adaptation roles under diverse environmental conditions.


Assuntos
Ascomicetos , Magnaporthe , Triticum , Triticum/genética , Bangladesh/epidemiologia , Zâmbia/epidemiologia , Magnaporthe/genética , Cromossomos , Doenças das Plantas/microbiologia
3.
aBIOTECH ; 4(4): 332-351, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38106435

RESUMO

We employed several algorithms with high efficacy to analyze the public transcriptomic data, aiming to identify key transcription factors (TFs) that regulate regeneration in Arabidopsis thaliana. Initially, we utilized CollaborativeNet, also known as TF-Cluster, to construct a collaborative network of all TFs, which was subsequently decomposed into many subnetworks using the Triple-Link and Compound Spring Embedder (CoSE) algorithms. Functional analysis of these subnetworks led to the identification of nine subnetworks closely associated with regeneration. We further applied principal component analysis and gene ontology (GO) enrichment analysis to reduce the subnetworks from nine to three, namely subnetworks 1, 12, and 17. Searching for TF-binding sites in the promoters of the co-expressed and co-regulated (CCGs) genes of all TFs in these three subnetworks and Triple-Gene Mutual Interaction analysis of TFs in these three subnetworks with the CCGs involved in regeneration enabled us to rank the TFs in each subnetwork. Finally, six potential candidate TFs-WOX9A, LEC2, PGA37, WIP5, PEI1, and AIL1 from subnetwork 1-were identified, and their roles in somatic embryogenesis (GO:0010262) and regeneration (GO:0031099) were discussed, so were the TFs in Subnetwork 12 and 17 associated with regeneration. The TFs identified were also assessed using the CIS-BP database and Expression Atlas. Our analyses suggest some novel TFs that may have regulatory roles in regeneration and embryogenesis and provide valuable data and insights into the regulatory mechanisms related to regeneration. The tools and the procedures used here are instrumental for analyzing high-throughput transcriptomic data and advancing our understanding of the regulation of various biological processes of interest. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00121-9.

4.
NAR Genom Bioinform ; 5(3): lqad083, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37711605

RESUMO

Four statistical selection methods for inferring transcription factor (TF)-target gene (TG) pairs were developed by coupling mean squared error (MSE) or Huber loss function, with elastic net (ENET) or least absolute shrinkage and selection operator (Lasso) penalty. Two methods were also developed for inferring pathway gene regulatory networks (GRNs) by combining Huber or MSE loss function with a network (Net)-based penalty. To solve these regressions, we ameliorated an accelerated proximal gradient descent (APGD) algorithm to optimize parameter selection processes, resulting in an equally effective but much faster algorithm than the commonly used convex optimization solver. The synthetic data generated in a general setting was used to test four TF-TG identification methods, ENET-based methods performed better than Lasso-based methods. Synthetic data generated from two network settings was used to test Huber-Net and MSE-Net, which outperformed all other methods. The TF-TG identification methods were also tested with SND1 and gl3 overexpression transcriptomic data, Huber-ENET and MSE-ENET outperformed all other methods when genome-wide predictions were performed. The TF-TG identification methods fill the gap of lacking a method for genome-wide TG prediction of a TF, and potential for validating ChIP/DAP-seq results, while the two Net-based methods are instrumental for predicting pathway GRNs.

5.
G3 (Bethesda) ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652038

RESUMO

Goss's wilt, caused by the Gram-positive actinobacterium Clavibacter nebraskensis, is an important bacterial disease of maize. The molecular and genetic mechanisms of resistance to the bacterium, or, in general, Gram-positive bacteria causing plant diseases, remain poorly understood. Here, we examined the genetic basis of Goss's wilt through differential gene expression, standard genome-wide association mapping (GWAS), extreme phenotype (XP) GWAS using highly resistant (R) and highly susceptible (S) lines, and quantitative trait locus (QTL) mapping using 3 bi-parental populations, identifying 11 disease association loci. Three loci were validated using near-isogenic lines or recombinant inbred lines. Our analysis indicates that Goss's wilt resistance is highly complex and major resistance genes are not commonly present. RNA sequencing of samples separately pooled from R and S lines with or without bacterial inoculation was performed, enabling identification of common and differential gene responses in R and S lines. Based on expression, in both R and S lines, the photosynthesis pathway was silenced upon infection, while stress-responsive pathways and phytohormone pathways, namely, abscisic acid, auxin, ethylene, jasmonate, and gibberellin, were markedly activated. In addition, 65 genes showed differential responses (up- or down-regulated) to infection in R and S lines. Combining genetic mapping and transcriptional data, individual candidate genes conferring Goss's wilt resistance were identified. Collectively, aspects of the genetic architecture of Goss's wilt resistance were revealed, providing foundational data for mechanistic studies.


Assuntos
Transcriptoma , Zea mays , Zea mays/genética , Zea mays/microbiologia , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico , Sequência de Bases , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
6.
Tree Physiol ; 43(10): 1811-1824, 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406032

RESUMO

The new variety Betula pendula 'Dalecarlica', selected from Betula pendula, shows high ornamental value owing to its lobed leaf shape. In this study, to identify the genetic components of leaf shape formation, we performed bulked segregant analysis and molecular marker-based fine mapping to identify the causal gene responsible for lobed leaves in B. pendula 'Dalecarlica'. The most significant variations associated with leaf shape were identified within the gene BpPIN1 encoding a member of the PIN-FORMED family, responsible for the auxin efflux carrier. We further confirmed the hypomethylation at the promoter region promoting the expression level of BpPIN1, which causes stronger and longer veins and lobed leaf shape in B. pendula 'Dalecarlica'. These results indicated that DNA methylation at the BpPIN1 promoter region is associated with leaf shapes in B. pendula. Our findings revealed an epigenetic mechanism of BpPIN1 in the regulation of leaf shape in Betula  Linn. (birch), which could help in the molecular breeding of ornamental traits.

7.
Plant Cell ; 35(8): 2736-2749, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37233025

RESUMO

Understanding gene regulatory networks is essential to elucidate developmental processes and environmental responses. Here, we studied regulation of a maize (Zea mays) transcription factor gene using designer transcription activator-like effectors (dTALes), which are synthetic Type III TALes of the bacterial genus Xanthomonas and serve as inducers of disease susceptibility gene transcription in host cells. The maize pathogen Xanthomonas vasicola pv. vasculorum was used to introduce 2 independent dTALes into maize cells to induced expression of the gene glossy3 (gl3), which encodes a MYB transcription factor involved in biosynthesis of cuticular wax. RNA-seq analysis of leaf samples identified, in addition to gl3, 146 genes altered in expression by the 2 dTALes. Nine of the 10 genes known to be involved in cuticular wax biosynthesis were upregulated by at least 1 of the 2 dTALes. A gene previously unknown to be associated with gl3, Zm00001d017418, which encodes aldehyde dehydrogenase, was also expressed in a dTALe-dependent manner. A chemically induced mutant and a CRISPR-Cas9 mutant of Zm00001d017418 both exhibited glossy leaf phenotypes, indicating that Zm00001d017418 is involved in biosynthesis of cuticular waxes. Bacterial protein delivery of dTALes proved to be a straightforward and practical approach for the analysis and discovery of pathway-specific genes in maize.


Assuntos
Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ceras/metabolismo
8.
BMC Genom Data ; 24(1): 29, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231352

RESUMO

OBJECTIVES: This report provides information about the public release of the 2018-2019 Maize G X E project of the Genomes to Fields (G2F) Initiative datasets. G2F is an umbrella initiative that evaluates maize hybrids and inbred lines across multiple environments and makes available phenotypic, genotypic, environmental, and metadata information. The initiative understands the necessity to characterize and deploy public sources of genetic diversity to face the challenges for more sustainable agriculture in the context of variable environmental conditions. DATA DESCRIPTION: Datasets include phenotypic, climatic, and soil measurements, metadata information, and inbred genotypic information for each combination of location and year. Collaborators in the G2F initiative collected data for each location and year; members of the group responsible for coordination and data processing combined all the collected information and removed obvious erroneous data. The collaborators received the data before the DOI release to verify and declare that the data generated in their own locations was accurate. ReadMe and description files are available for each dataset. Previous years of evaluation are already publicly available, with common hybrids present to connect across all locations and years evaluated since this project's inception.


Assuntos
Genoma de Planta , Zea mays , Fenótipo , Zea mays/genética , Estações do Ano , Genótipo , Genoma de Planta/genética
9.
Plants (Basel) ; 11(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890455

RESUMO

Although bulked segregant analysis (BSA) has been used extensively in genetic mapping, user-friendly tools which can integrate current algorithms for researchers with no background in bioinformatics are scarce. To address this issue, we developed an R package, PNGSeqR, which takes single-nucleotide polymorphism (SNP) markers from next-generation sequencing (NGS) data in variant call format (VCF) as the input file, provides four BSA algorithms to indicate the magnitude of genome-wide signals, and rapidly defines the candidate region through the permutation test and fractile quantile. Users can choose the analysis methods according to their data and experimental design. In addition, it also supports differential expression gene analysis (DEG) and gene ontology analysis (GO) to prioritize the target gene. Once the analysis is completed, the plots can conveniently be exported.

10.
Plant Biotechnol J ; 20(9): 1819-1832, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35656643

RESUMO

Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from Arabidopsis thaliana (AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress-associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non-transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment.


Assuntos
Arabidopsis , Termotolerância , Arabidopsis/genética , Grão Comestível/genética , Oxirredução , Termotolerância/genética , Zea mays/genética
11.
Nat Commun ; 13(1): 3044, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650212

RESUMO

The wheat wild relative Aegilops tauschii was previously used to transfer the Lr42 leaf rust resistance gene into bread wheat. Lr42 confers resistance at both seedling and adult stages, and it is broadly effective against all leaf rust races tested to date. Lr42 has been used extensively in the CIMMYT international wheat breeding program with resulting cultivars deployed in several countries. Here, using a bulked segregant RNA-Seq (BSR-Seq) mapping strategy, we identify three candidate genes for Lr42. Overexpression of a nucleotide-binding site leucine-rich repeat (NLR) gene AET1Gv20040300 induces strong resistance to leaf rust in wheat and a mutation of the gene disrupted the resistance. The Lr42 resistance allele is rare in Ae. tauschii and likely arose from ectopic recombination. Cloning of Lr42 provides diagnostic markers and over 1000 CIMMYT wheat lines carrying Lr42 have been developed documenting its widespread use and impact in crop improvement.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Basidiomycota/genética , Mapeamento Cromossômico , Clonagem Molecular , Resistência à Doença/genética , Genes de Plantas/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Puccinia , Triticum/genética
12.
Mol Plant Microbe Interact ; 35(4): 336-348, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35100008

RESUMO

The fungus Pyrenophora tritici-repentis causes tan spot, an important foliar disease of wheat worldwide. The fungal pathogen produces three necrotrophic effectors, namely Ptr ToxA, Ptr ToxB, and Ptr ToxC to induce necrosis or chlorosis in wheat. Both Ptr ToxA and Ptr ToxB are proteins, and their encoding genes have been cloned. Ptr ToxC was characterized as a low-molecular weight molecule 20 years ago but the one or more genes controlling its production in P. tritici-repentis are unknown. Here, we report the genetic mapping, molecular cloning, and functional analysis of a fungal gene that is required for Ptr ToxC production. The genetic locus controlling the production of Ptr ToxC, termed ToxC, was mapped to a subtelomeric region using segregating biparental populations, genome sequencing, and association analysis. Additional marker analysis further delimited ToxC to a 173-kb region. The predicted genes in the region were examined for presence/absence polymorphism in different races and isolates leading to the identification of a single candidate gene. Functional validation showed that this gene was required but not sufficient for Ptr ToxC production, thus it is designated as ToxC1. ToxC1 encoded a conserved hypothetical protein likely located on the vacuole membrane. The gene was highly expressed during infection, and only one haplotype was identified among 120 isolates sequenced. Our work suggests that Ptr ToxC is not a protein and is likely produced through a cascade of biosynthetic pathway. The identification of ToxC1 is a major step toward revealing the Ptr ToxC biosynthetic pathway and studying its molecular interactions with host factors.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Doenças das Plantas , Ascomicetos/genética , Mapeamento Cromossômico , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
13.
Plants (Basel) ; 10(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34834800

RESUMO

Maize vivipary, precocious seed germination on the ear, affects yield and seed quality. The application of multi-omics approaches, such as transcriptomics or metabolomics, to classic vivipary mutants can potentially reveal the underlying mechanism. Seven maize vivipary mutants were selected for transcriptomic and metabolomic analyses. A suite of transporters and transcription factors were found to be upregulated in all mutants, indicating that their functions are required during seed germination. Moreover, vivipary mutants exhibited a uniform expression pattern of genes related to abscisic acid (ABA) biosynthesis, gibberellin (GA) biosynthesis, and ABA core signaling. NCED4 (Zm00001d007876), which is involved in ABA biosynthesis, was markedly downregulated and GA3ox (Zm00001d039634) was upregulated in all vivipary mutants, indicating antagonism between these two phytohormones. The ABA core signaling components (PYL-ABI1-SnRK2-ABI3) were affected in most of the mutants, but the expression of these genes was not significantly different between the vp8 mutant and wild-type seeds. Metabolomics analysis integrated with co-expression network analysis identified unique metabolites, their corresponding pathways, and the gene networks affected by each individual mutation. Collectively, our multi-omics analyses characterized the transcriptional and metabolic landscape during vivipary, providing a valuable resource for improving seed quality.

14.
Genome Biol ; 22(1): 175, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108023

RESUMO

BACKGROUND: The maize inbred line A188 is an attractive model for elucidation of gene function and improvement due to its high embryogenic capacity and many contrasting traits to the first maize reference genome, B73, and other elite lines. The lack of a genome assembly of A188 limits its use as a model for functional studies. RESULTS: Here, we present a chromosome-level genome assembly of A188 using long reads and optical maps. Comparison of A188 with B73 using both whole-genome alignments and read depths from sequencing reads identify approximately 1.1 Gb of syntenic sequences as well as extensive structural variation, including a 1.8-Mb duplication containing the Gametophyte factor1 locus for unilateral cross-incompatibility, and six inversions of 0.7 Mb or greater. Increased copy number of carotenoid cleavage dioxygenase 1 (ccd1) in A188 is associated with elevated expression during seed development. High ccd1 expression in seeds together with low expression of yellow endosperm 1 (y1) reduces carotenoid accumulation, accounting for the white seed phenotype of A188. Furthermore, transcriptome and epigenome analyses reveal enhanced expression of defense pathways and altered DNA methylation patterns of the embryonic callus. CONCLUSIONS: The A188 genome assembly provides a high-resolution sequence for a complex genome species and a foundational resource for analyses of genome variation and gene function in maize. The genome, in comparison to B73, contains extensive intra-species structural variations and other genetic differences. Expression and network analyses identify discrete profiles for embryonic callus and other tissues.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética , Característica Quantitativa Herdável , Zea mays/genética , Sequência de Bases , Mapeamento Cromossômico , Metilação de DNA , Dioxigenases/genética , Dioxigenases/metabolismo , Endosperma/genética , Endosperma/metabolismo , Variação Genética , Endogamia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Zea mays/classificação , Zea mays/metabolismo
15.
Sci Rep ; 11(1): 13174, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162988

RESUMO

Identification of biological process- and pathway-specific regulators is essential for advancing our understanding of regulation and formation of various phenotypic and complex traits. In this study, we applied two methods, triple-gene mutual interaction (TGMI) and Sparse Partial Least Squares (SPLS), to identify the regulators of multiple metabolic pathways in Arabidopsis thaliana and Populus trichocarpa using high-throughput gene expression data. We analyzed four pathways: (1) lignin biosynthesis pathway in A. thaliana and P. trichocarpa; (2) flavanones, flavonol and anthocyannin biosynthesis in A. thaliana; (3) light reaction pathway and Calvin cycle in A. thaliana. (4) light reaction pathway alone in A. thaliana. The efficiencies of two methods were evaluated by examining the positive known regulators captured, the receiver operating characteristic (ROC) curves and the area under ROC curves (AUROC). Our results showed that TGMI is in general more efficient than SPLS in identifying true pathway regulators and ranks them to the top of candidate regulatory gene lists, but the two methods are to some degree complementary because they could identify some different pathway regulators. This study identified many regulators that potentially regulate the above pathways in plants and are valuable for genetic engineering of these pathways.


Assuntos
Arabidopsis/metabolismo , Análise dos Mínimos Quadrados , Redes e Vias Metabólicas/genética , Populus/metabolismo , Antocianinas/biossíntese , Arabidopsis/genética , Área Sob a Curva , Conjuntos de Dados como Assunto , Flavonas/biossíntese , Flavonoides/biossíntese , Genes de Plantas , Luz , Lignina/biossíntese , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Curva ROC , Especificidade da Espécie
16.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069397

RESUMO

Drought stress is a major constraint in global maize production, causing almost 30-90% of the yield loss depending upon growth stage and the degree and duration of the stress. Here, we report that ectopic expression of Arabidopsis glutaredoxin S17 (AtGRXS17) in field grown maize conferred tolerance to drought stress during the reproductive stage, which is the most drought sensitive stage for seed set and, consequently, grain yield. AtGRXS17-expressing maize lines displayed higher seed set in the field, resulting in 2-fold and 1.5-fold increase in yield in comparison to the non-transgenic plants when challenged with drought stress at the tasseling and silking/pollination stages, respectively. AtGRXS17-expressing lines showed higher relative water content, higher chlorophyll content, and less hydrogen peroxide accumulation than wild-type (WT) control plants under drought conditions. AtGRXS17-expressing lines also exhibited at least 2-fold more pollen germination than WT plants under drought stress. Compared to the transgenic maize, WT controls accumulated higher amount of proline, indicating that WT plants were more stressed over the same period. The results present a robust and simple strategy for meeting rising yield demands in maize under water limiting conditions.


Assuntos
Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Estresse Fisiológico/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secas , Expressão Ectópica do Gene/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/fisiologia , Termotolerância/genética , Zea mays/genética
17.
Fungal Genet Biol ; 152: 103571, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015431

RESUMO

Pyrenophora tritici-repentis is an ascomycete fungus that causes tan spot of wheat. The disease has a worldwide distribution and can cause significant yield and quality losses in wheat production. The fungal pathogen is homothallic in nature, which means it can undergo sexual reproduction by selfing to produce pseudothecia on wheat stubble for seasonal survival. Since homothallism precludes the development of bi-parental fungal populations, no genetic linkage map has been developed for P. tritici-repentis for mapping and map-based cloning of fungal virulence genes. In this work, we created two heterothallic strains by deleting one of the mating type genes in each of two parental isolates 86-124 (race 2) and AR CrossB10 (a new race) and developed a bi-parental fungal population between them. The draft genome sequences of the two parental isolates were aligned to the Pt-1C-BFP reference sequence to mine single nucleotide polymorphisms (SNPs). A total of 225 SNP markers were developed for genotyping the entire population. Additionally, 75 simple sequence repeat, and two gene markers were also developed and used in the genotyping. The resulting linkage map consisted of 13 linkage groups spanning 5,075.83 cM in genetic distance. Because the parental isolate AR CrossB10 is a new race and produces Ptr ToxC, it was sequenced using long-read sequencing platforms and de novo assembled into contigs. The majority of the contigs were further anchored into chromosomes with the aid of the linkage maps. The whole genome comparison of AR CrossB10 to the reference genome of M4 revealed a few chromosomal rearrangements. The genetic linkage map and the new AR CrossB10 genome sequence are valuable tools for gene cloning in P. tritici-repentis.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Ligação Genética , Micotoxinas/genética , Mapeamento Cromossômico , Marcadores Genéticos , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Virulência/genética
18.
Theor Appl Genet ; 134(2): 633-645, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33164159

RESUMO

KEY MESSAGE: Multiple origins of Indian dwarf wheat were due to two mutations targeting the same TREE domain of a GSK3-like kinase, and these mutations confer to enhanced drought tolerance and increased phosphate and nitrogen accumulation for adaptation to the dry climate of Indian and Pakistan. Indian dwarf wheat, featured by the short stature, erect leaves, dense spikes, and small, spherical grains, was a staple crop in India and Pakistan from the Bronze Age until the early 1900s. These morphological features are controlled by a single locus Sphaerococcum 1 (S1), but the genetic identity of the locus and molecular mechanisms underlying the selection of this wheat type are unknown. In this study, we showed that the origin of Indian dwarf wheat was due to two independent missense mutations targeting the conserved TREE domain of a GSK3-like kinase, which is homologous to the Arabidopsis BIN2 protein, a negative regulator in brassinosteroid signaling. The S1 protein is involved in brassinosteroid signaling by physical interaction with the wheat BES1/BZR1 proteins. The dwarf alleles are insensitive to brassinosteroid, upregulates brassinosteroid biosynthetic genes, significantly enhanced drought tolerance, facilitated phosphate accumulation, and increased high molecular weight glutenins. It is the enhanced drought tolerance and accumulation of nitrogen and phosphate that contributed to the adaptation of such a small-grain form of wheat to the dry climate of India and Pakistan. Thus, our research not only identified the genetic events underlying the origin of the Indian dwarf wheat, but also revealed the function of brassinosteroid in the regulation of drought tolerance, phosphate homeostasis, and grain quality.


Assuntos
Secas , Quinase 3 da Glicogênio Sintase/metabolismo , Mutação , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Triticum/fisiologia , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/genética , Fenótipo , Fosforilação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Triticum/genética
19.
Plant Commun ; 1(4): 100087, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33367250

RESUMO

Xanthomonas oryzae pathovar oryzae (Xoo) uses transcription activator-like effectors (TALEs) to cause bacterial blight (BB) in rice. In turn, rice has evolved several mechanisms to resist BB by targeting TALEs. One mechanism involves the nucleotide-binding leucine-rich repeat (NLR) resistance gene Xa1 and TALEs. Reciprocally, Xoo has evolved TALE variants, C-terminally truncated versions (interfering TALEs or iTALEs), to overcome Xa1 resistance. However, it remains unknown to what extent the two co-adaptive mechanisms mediate Xoo-rice interactions. In this study, we cloned and characterized five additional Xa1 allelic R genes, Xa2, Xa31(t), Xa14, CGS-Xo111 , and Xa45(t) from a collection of rice accessions. Sequence analysis revealed that Xa2 and Xa31(t) from different rice cultivars are identical. These genes and their predicted proteins were found to be highly conserved, forming a group of Xa1 alleles. The XA1 alleles could be distinguished by the number of C-terminal tandem repeats consisting of 93 amino acid residues and ranged from four in XA14 to seven in XA45(t). Xa1 allelic genes were identified in the 3000 rice genomes surveyed. On the other hand, iTALEs could suppress the resistance mediated by Xa1 allelic R genes, and iTALE genes were prevalent (∼95%) in Asian, but not in African Xoo strains. Our findings demonstrate the prominence of a defense mechanism in which rice depends on Xa1 alleles and a counteracting mechanism in which Xoo relies on iTALEs for BB.


Assuntos
Resistência à Doença/genética , Proteínas Fúngicas/genética , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Efetores Semelhantes a Ativadores de Transcrição/genética , Xanthomonas/genética , Sequência de Aminoácidos , Proteínas Fúngicas/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/metabolismo
20.
Front Plant Sci ; 11: 596581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362828

RESUMO

Postemergence grass weed control continues to be a major challenge in grain sorghum [Sorghum bicolor (L.) Moench], primarily due to lack of herbicide options registered for use in this crop. The development of herbicide-resistant sorghum technology to facilitate broad-spectrum postemergence weed control can be an economical and viable solution. The 4-hydroxyphenylpyruvate dioxygenase-inhibitor herbicides (e.g., mesotrione or tembotrione) can control a broad spectrum of weeds including grasses, which, however, are not registered for postemergence application in sorghum due to crop injury. In this study, we identified two tembotrione-resistant sorghum genotypes (G-200, G-350) and one susceptible genotype (S-1) by screening 317 sorghum lines from a sorghum association panel (SAP). These tembotrione-resistant and tembotrione-susceptible genotypes were evaluated in a tembotrione dose-response [0, 5.75, 11.5, 23, 46, 92 (label recommended dose), 184, 368, and 736 g ai ha-1] assay. Compared with S-1, the genotypes G-200 and G-350 exhibited 10- and seven fold more resistance to tembotrione, respectively. To understand the inheritance of tembotrione-resistant trait, crosses were performed using S-1 and G-200 or G-350 to generate F1 and F2 progeny. The F1 and F2 progeny were assessed for their response to tembotrione treatment. Genetic analyses of the F1 and F2 progeny demonstrated that the tembotrione resistance in G-200 and G-350 is a partially dominant polygenic trait. Furthermore, cytochrome P450 (CYP)-inhibitor assay using malathion and piperonyl butoxide suggested possible CYP-mediated metabolism of tembotrione in G-200 and G-350. Genotype-by-sequencing based quantitative trait loci (QTL) mapping revealed QTLs associated with tembotrione resistance in G-200 and G-350 genotypes. Overall, the genotypes G-200 and G-350 confer a high level of metabolic resistance to tembotrione and controlled by a polygenic trait. There is an enormous potential to introgress the tembotrione resistance into breeding lines to develop agronomically desirable sorghum hybrids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...